THE MATHEMATICAL GRAMMAR SCHOOL CUP
 -MATHEMATICS-

BELGRADE, June 27, 2017

PART ONE

5. (C)
6. (D)
7. (A)
8. (E)

PART TWO

9. Let k be the circumcircle of triangle $A B C$, and let D, E, and F be the midpoints of those arcs $B C, A C, A B$ of k, that do not contain points A, B, C, respectively. If $P=A B \cap D F$ and $Q=A C \cap D E$, prove that $P Q$ is parallel to $B C$.

Solution. Let S be the centre of the incircle of triangle $A B C$. It is well-known that $\{S\}=C F \cap B E \cap A D$. Firstly, we will show that point S lies on segment $P Q$.

Applying the inscribed angle theorem we get that:

$$
\begin{aligned}
& \varangle E C A=\varangle E A C=\varangle C D E=\varangle E D A=\varangle A F E=\varangle C F E=\frac{\beta}{2} ; \\
& \varangle D C B=\varangle D B C=\varangle D F C=\varangle D F B=\varangle C E D=\varangle B E D=\frac{\alpha}{2} ; \\
& \varangle F A B=\varangle F B A=\varangle B D F=\varangle A D F=\varangle A E F=\varangle B E F=\frac{\gamma}{2} .
\end{aligned}
$$

Therefore, $\varangle S A F=\varangle A S F$ and $A F=S F$. Similarly, $\varangle E A S=\varangle E S A, A E=S E$ and $\varangle D B S=\varangle D S B, B D=S D$. It follows that line $E F$ is the bisector of $S A, D F$ is the bisector of $S B$, and $D E$ is the bisector of $S C$.

Now, since Q lies on $E D$ and P lies on $F D, Q C=Q S$ and $P S=P B$, we have that $\varangle Q S P=\varangle Q S A+\varangle P S A=\varangle Q S E+\varangle E S A+$ $\varangle A S F+\varangle F S P=\beta / 2+(\alpha / 2+\beta / 2)+(\alpha / 2+$ $\gamma / 2)+\gamma / 2=\alpha+\beta+\gamma=180^{\circ}$, and we conclude that Q, S, P are collinear points.

Since $\varangle S P A=180^{\circ}-\varangle S A P-\varangle A S P=$ $180^{\circ}-\alpha / 2-(\alpha / 2+\gamma)=\beta=\varangle C B A$, we conclude that $S P \| B C$, i.e., that $P Q \| B C$.

10. Let a, b, c, and m be integers and $m \geq 2$. If $a^{n}+b n+c$ is divisible by m for all positive integers n, prove that b^{2} is divisible by m. Does b always have to be divisible by m ?

Solution. For $n=1,2,3$ and some integers k_{1}, k_{2}, k_{3} we have that

$$
\begin{align*}
a+b+c & =m \cdot k_{1}, \tag{1}\\
a^{2}+2 b+c & =m \cdot k_{2}, \tag{2}\\
a^{3}+3 b+c & =m \cdot k_{3} . \tag{3}
\end{align*}
$$

Now we obtain

$$
\begin{array}{rlrl}
a^{2}-a+b & =m \cdot\left(k_{2}-k_{1}\right) & =m \cdot \ell_{1}, & \\
\text { equations }(2)-(1), \tag{5}\\
a^{3}-a^{2}+b & =m \cdot\left(k_{3}-k_{2}\right) & =m \cdot \ell_{2}, & \\
\text { equations (3) }-(2),
\end{array}
$$

and therefore, from (4) and (5), $a(a-1)^{2}=a^{3}-2 a^{2}+a=m \cdot\left(\ell_{2}-\ell_{1}\right)=m \cdot o$.
From (4), $b=m \ell_{1}-\left(a^{2}-a\right)$, and from (5), $b=m \ell_{2}-\left(a^{3}-a^{2}\right)$. When we multiply these two equations we obtain

$$
\begin{aligned}
b^{2} & =\left(m \ell_{1}-\left(a^{2}-a\right)\right) \cdot\left(m \ell_{2}-\left(a^{3}-a^{2}\right)\right) \\
& =m\left(m \ell_{1} \ell_{2}-\ell_{1}\left(a^{3}-a^{2}\right)-\ell_{2}\left(a^{2}-a\right)\right)+a^{3}(a-1)^{2} \\
& =m\left(m \ell_{1} \ell_{2}-\ell_{1}\left(a^{3}-a^{2}\right)-\ell_{2}\left(a^{2}-a\right)\right)+a^{2} m o,
\end{aligned}
$$

which proves that b^{2} is divisible by m.
Let us now show that b does not always have to be divisible by m. Let $m=4, a=3$, $b=2$, and $c=3$, and let us show that $3^{n}+2 n+3$ is divisible by 4 for all positive integers n. We will use mathematical induction on n. When $n=1$ we have that $4 \mid 8=3^{1}+2 \cdot 1+3$. Now suppose that $3^{n}+2 n+3=4 s$, for some integer s. Let us prove that the claim holds for $n+1: 3^{n+1}+2(n+1)+3=3 \cdot\left(3^{n}+2 n+3\right)-4 n-4=4 \cdot(3 s-n-1)$.
11. If x, y, z are positive real numbers such that $x+y+z=1$. Prove the following inequality:

$$
x y+y z+z x-x y z \leq \frac{8}{27} .
$$

Solution 1.

$$
\begin{aligned}
x y & +y z+z x-x y z-\frac{8}{27}=x y(1-z)+z(x+y)-\frac{8}{27} \\
& \leq(1-z)\left(\frac{x+y}{2}\right)^{2}+z(x+y)-\frac{8}{27} \quad(\text { by }(\mathrm{AM}-\mathrm{GM}) \text { inequality and } 1-z \geq 0) \\
& =\frac{(1-z)^{3}}{4}+z(1-z)-\frac{8}{27}=\frac{\alpha^{3}}{4}-\alpha^{2}+\alpha-\frac{8}{27} \quad(\text { for } \alpha=1-z) \\
& =\left(\alpha-\frac{8}{3}\right)\left(\frac{\alpha^{2}}{4}-\frac{\alpha}{3}+\frac{1}{9}\right)=\left(\alpha-\frac{8}{3}\right)\left(\frac{\alpha}{2}-\frac{1}{3}\right)^{2} \leq 0,
\end{aligned}
$$

since $\alpha \in[0,1]$, which proves the inequality. The equality holds if and only if $x=y=$ $z=1 / 3$.
Solution 2. Starting from a well-known identity,

$$
\begin{aligned}
x^{3}+y^{3}+z^{3}-3 x y z & =(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right) \\
& =x^{2}+y^{2}+z^{2}-x y-x z-y z \\
& =1-3(x y+x z+y z),
\end{aligned}
$$

we use the generalized mean inequality $M_{1}(x, y, z) \leq M_{3}(x, y, z)$:

$$
\sqrt[3]{\frac{x^{3}+y^{3}+z^{3}}{3}} \geq \frac{x+y+z}{3}=\frac{1}{3} \Longrightarrow x^{3}+y^{3}+z^{3} \geq \frac{1}{9}
$$

to get $1-3(x y+x z+y z)=x^{3}+y^{3}+z^{3}-3 x y z \geq \frac{1}{9}-3 x y z$, and, therefore,

$$
x y+y z+z x-x y z \leq \frac{1}{3}\left(1-\frac{1}{9}\right)=\frac{8}{27} .
$$

The equality holds if and only if $x=y=z=1 / 3$.
12. In how many ways can a convex 2017-gon be divided into triangles by 2014 diagonals that do not intersect each other (except possibly in their endpoints), in such a way that each triangle has an edge in common with that 2017-gon? The answer has to be given in the form $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, for some positive integer k, prime numbers $p_{1}, p_{2}, \ldots, p_{k}$, and positive integers $\alpha_{1}, \ldots, \alpha_{k}$.

Example. On the left: For a rectangle there are exactly two such divisions.
On the right: One of the divisions of a 5 -gon satisfying the conditions.

Solution. Since there are 2015 triangles in this division, at least one has to have 2 sides in common with that convex 2017-gon.

Let us choose a vertex v_{i} (there are 2017 ways to do this). Connect the two neighbouring vertices of v_{i} by a diagonal d_{1}. The triangle whose one side is d_{1}, and that is on the other side of the first triangle, has to have an edge in common with the 2017-gon, so the third edge has to be one of the two diagonals
 connecting an endpoint of d_{1} with the neighbour of the other endpoint of d_{1}, as shown in the figure to the right. So we have two possibilities to choose d_{2}. Similarly, if we have already chosen diagonals $d_{1}, \ldots, d_{i}(i<2014)$, there are two possibilities for d_{i+1}. Therefore, we have 2017 ways to choose v_{i}, and 2^{2013} ways to choose a sequence d_{1}, \ldots, d_{2014} of diagonals. However, every such division has exactly two triangles which contain two (necessarily) adjacent edges of the 2017-gon, and therefore we have to divide everything by 2 to obtain the final number of divisions with the desired property: $2017 \cdot 2^{2012}$.

