THE MATHEMATICAL GRAMMAR SCHOOL CUP
 - MATHEMATICS -

29. June 2022.

This test consists of 12 problems on two pages. The problems are divided into two parts: multiple choice questions and "fill-in" problems where a student should fill in their answers by hand on the answer sheet. The examination lasts 180 minutes. The use of calculators, computers, or other electronic devices is strictly prohibited.

PART ONE

Problems 1 to 8 are multiple choice problems. Out of the five choices offered for a problem, exactly one is the correct answer. On the answer sheet you should circle only the letter that corresponds to the answer you have chosen. Each correct answer is worth 5 points.

1. Let B be the set of positive integers less than 10^{6} in the decimal representation of which the digits 2 or 7 appear. If $|B|$ is the number of elements of the set B, then the sum of its digits is:
(A) 18
(B) 30
(C) 36
(D) 42
(E) 45 .
2. Suppose that A is the set of all integer numbers n such that the number $2^{n}+2^{8}+2^{11}$ is a perfect square. Then the number of elements of set A is equal to:
(A) 0
(B) 1
(C) 2
(D) 4
(E) $+\infty$.
3. Let d be the last digit of the number x, where x is the least common multiple of numbers $2^{2^{2}}+1,2^{2^{3}}+$ $1, \ldots, 2^{2^{2022}}+1$, then d is equat to:
(A) 1
(B) 4
(C) 7
(D) 8
(E) 9 .
4. The angles at the vertices A and B of triangle $A B C$ are equal to 60° and 48°, respectively. The line p, which contains the center of the inscribed circle of that triangle and is parallel to $A C$, intersects the line $A B$ at the point P. If Q is the point on the segment $B C, B C=3 B Q$, then the $\measuredangle B P Q$ is equal to:
(A) 20°
(B) 24°
(C) 30°
(D) 32°
(E) 48°.
5. Let \mathbb{Q} be the set of all rational real numbers and let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be a function for which the following conditions hold:
(a) $(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$, for all $x, y \in \mathbb{Q}$,
(b) $f(1)=-1$.

The total number of all integer divisors of the number $f(10)$ is:
(A) 12
(B) 18
(C) 24
(D) 30
(E) 36 .
6. Let $A B C D$ be a convex and cyclic quadrilateral. Suppose that the bisectors of the interior angles at the vertices C and D of that quadrilateral meet each other at the segment $A B$. If $A D=5$ and $B C=2$, then $A B(A D-B C)$ is equal to:
(A) 18
(B) 21
(C) 24
(D) 27
(E) 30 .
7. Let C be the set of all positive integers n for which there is a polynomial p_{n} of degree n, with integer coefficients, $p_{n}(0)=0$, such that the equation $p_{n}(x)-n=0$ has exactly n integer solutions. Then $\max C-\min C$ is equal to:
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4 .
8. Let $A B C D$ be a convex quadrilateral of area 32 . If for the lengths of the segments $A B, B D$ and $D C$ hold $A B+B D+D C=16$, then $\frac{A C}{B D}$ is equal to:
(A) $\sqrt{2}$
(B) $\sqrt{3}$
(C) $2 \sqrt{3}$
(D) $2 \sqrt{2}$
(E) $\frac{3}{2}$.

PART TWO

Problems 9 to 12 are "fill-in" problems. Points for a certain part of the problem will be awarded only if this and all the answers to the previous parts are correct.
9. If a, b, c are positive real numbers such that $a^{2}+b^{2}+c^{2}=3$ prove that:

$$
\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1} \geq \frac{3}{2}
$$

10. Let $A B C$ be a triangle and k it's circumcircle. Let k_{a} be the circle that touches the sides $A B$ and $A C$ and k internally at A_{1}. Let B_{1} and C_{1} be defined analogously. Prove that $A A_{1}, B B_{1}$ and $C C_{1}$ have a common point.
11. A tilling of a board consists of covering a board with given shapes such that all tiles are covered and no shapes overlap. We're covering a square $n \times n$ board with T and skew tetrominos. (T-tetromino consists of four squares in the shape of letter T , skew tetromino consists of 4 squares in the shape of letter S or Z)
(1) Can you tile a 6×6 board?
(2) Can you tile a 10×10 board?
(3) Can you tile a 2022×2022 board?
12. For which non-negative integers n is $9^{n}+10^{n}+11^{n}$ a square of a natural number?

GOOD LUCK!!!

