THE MATHEMATICAL GRAMMAR SCHOOL CUP -MATHEMATICS-

Belgrade, June 27, 2017

PART ONE

Problems 1 to 8 are multiple choice problems. Out of five choices offered for a problem, exactly one is the correct answer. On the answer sheet you should circle only the letter that corresponds to the answer you have chosen. Each correct answer is worth 5 points.

1. If number a is increased by 10%, and number b is decreased by 10%, the resulting numbers will be equal to each other. What is the ratio of a to b ?
(A) $\frac{9}{11}$;
(B) $\frac{9}{10}$;
(C) $\frac{1}{1}$;
(D) $\frac{11}{9}$;
(E) $\frac{10}{9}$.
2. The bases of a right-angled trapezium have lengths equal to 5 cm and 2 cm , and the acute angle is equal to 45°. The area of this trapezium is equal to:
(A) $9 \mathrm{~cm}^{2}$;
(B) $10 \mathrm{~cm}^{2}$;
(C) $12,5 \mathrm{~cm}^{2}$;
(D) $7 \mathrm{~cm}^{2}$;
(E) $10,5 \mathrm{~cm}^{2}$.
3. The sum of all solutions of the equation $||3 x-2|-x|=2$ in the set of real numbers is equal to:
(A) 0 ;
(B) 2 ;
(C) 3;
(D) 1;
(E) 4 .
4. How many integers m are there such that the number $\frac{2 m+12}{m+3}$ is also an integer?
(A) 5 or less;
(B) 6 ;
(C) 7 ;
(D) 8 ;
(E) 9 or more.
5. Two lines a and b passing through point A intersect each other at an angle of 60°. A circle, which is tangent to line a at point A, intersects line b in point B as well, as shown in the figure to the right. If $A B=12 \mathrm{~cm}$, the area of the circle is equal to:
(A) $144 \pi \mathrm{~cm}^{2}$;
(B) $36 \pi \mathrm{~cm}^{2}$;
(C) $48 \pi \mathrm{~cm}^{2}$;
(D) $54 \pi \mathrm{~cm}^{2}$;
(E) $72 \pi \mathrm{~cm}^{2}$.

6. The number of odd 3-digit positive integers with distinct digits is equal to:
(A) 270 ;
(B) 300 ;
(C) 315 ;
(D) 320;
(E) 360 .
7. In triangle $A B C, B E$ and $C F$ are perpendicular to the angle $B A C$ bisector, denoted by ℓ (where E, F are points on ℓ). If $A B=8 \mathrm{~cm}, A C=12 \mathrm{~cm}$, and $A F=9 \mathrm{~cm}$, the length of segment $A E$ is equal to:
(A) 6 cm ;
(B) $4 \sqrt{3} \mathrm{~cm}$;
(C) 5 cm ;
(D) $\frac{32}{3} \mathrm{~cm}$;
(E) $3 \sqrt{3} \mathrm{~cm}$.
8. The number of all right-angled triangles, with the property that one cathetus (leg) has length 21 , while both the other cathetus (leg) and the hypotenuse have integer lengths, is equal to:
(A) 2 ;
(B) 1 or less;
(C) 5 or more;
(D) 3 ;
(E) 4 .

PART TWO

Problems 9 to 12 are classic problems, and solutions have to be written and explained in details. Each completely correct solution to a problem is worth 15 points.
9. Let k be the circumcircle of triangle $A B C$, and let D, E, and F be the midpoints of those arcs $B C, A C, A B$ of k, that do not contain points A, B, C, respectively. If $P=A B \cap D F$ and $Q=A C \cap D E$, prove that $P Q$ is parallel to $B C$.
10. Let a, b, c, and m be integers and $m \geq 2$. If $a^{n}+b n+c$ is divisible by m for all positive integers n, prove that b^{2} is divisible by m. Does b always have to be divisible by m ?
11. If x, y, z are positive real numbers such that $x+y+z=1$. Prove the following inequality:

$$
x y+y z+z x-x y z \leq \frac{8}{27} .
$$

12. In how many ways can a convex 2017-gon be divided into triangles by 2014 diagonals that do not intersect each other (except possibly in their endpoints), in such a way that each triangle has at least one edge in common with that 2017-gon? The answer has to be given in the form $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, for some positive integer k, prime numbers $p_{1}, p_{2}, \ldots, p_{k}$, and positive integers $\alpha_{1}, \ldots, \alpha_{k}$.

Example. On the left: For a rectangle there are exactly two such divisions. On the right: One of the divisions of a 5 -gon satisfying the conditions.

