THE MATHEMATICAL GRAMMAR SCHOOL CUP
 - MATHEMATICS -

29. June 2022.

PART ONE

The correct answers are: 1. (C) 2. (B) 3. (C) 4. (B) 5. (E) 6. (B) 7. (D) 8. (A)

PART TWO
9. For all non-negative a we have:

$$
\begin{gathered}
(a-1)^{2}(a+3) \geq 0 \\
a^{3}+a^{2}-5 a+3 \geq 0 \\
\left(5-a^{2}\right)(a+1) \leq 8 \\
\frac{1}{a+1} \geq \frac{5-a^{2}}{8}
\end{gathered}
$$

Summed for a, b, c this gives us:

$$
\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1} \geq \frac{15-a^{2}-b^{2}-c^{2}}{8}=\frac{3}{2}
$$

10. Apply inversion with regards to A with radius $\sqrt{b c}$ and reflection in the bisector $\angle B A C$. This sends B to C, C to B, circumcircle k to the line $B C$ and k_{a} to the excircle opposite of A . The inversion formula for distance states the following:

$$
A_{1} B=A_{1}^{\prime} B^{\prime} \frac{R^{2}}{A A_{1}^{\prime} \cdot A B^{\prime}}=(s-b) \frac{b c}{A A_{1}^{\prime} \cdot b}
$$

Similarly we calculate $A_{1} C$ and we then have:

$$
\frac{A_{1} B}{A_{1} C}=\frac{(s-b) \frac{c}{A A_{1}^{\prime}}}{(s-c) \frac{b}{A A_{1}^{\prime}}}=\frac{(s-b) c}{(s-c) b}
$$

Multiply this expression for a, b, c to get:

$$
\frac{A_{1} B}{A_{1} C} \cdot \frac{B_{1} C}{B_{1} A} \cdot \frac{C_{1} A}{C_{1} B}=\frac{(s-b) c}{(s-c) b} \cdot \frac{(s-c) a}{(s-a) c} \cdot \frac{(s-a) b}{(s-b) a}=1
$$

This is a well known lemma for cyclic hexagon that main diagonals intersect in a point if and only if $a c e=b d f$. The proof goes as following. First we prove the direction when diagonals intersect in a point.

$$
\begin{aligned}
& \triangle A B S \sim \triangle E D S \Longrightarrow \frac{B S}{D S}=\frac{A B}{E D}=\frac{a}{d} \\
& \triangle B C S \sim \triangle F E S \Longrightarrow \frac{F S}{B S}=\frac{F E}{B C}=\frac{e}{b} \\
& \triangle C D S \sim \triangle A F S \Longrightarrow \frac{D S}{F S}=\frac{C D}{A F}=\frac{c}{f}
\end{aligned}
$$

Which when multiplied gives:

$$
\frac{a}{d} \cdot \frac{e}{b} \cdot \frac{c}{f}=\frac{B S}{D S} \cdot \frac{F S}{B S} \cdot \frac{D S}{F S}=1
$$

This proves one direction of the lemma. Other other is proven using the uniqueness argument. Suppose the points A, B, C, D, E are fixed. If S is intersection of $B E$ and $A D$ then there is a unique F such that $C F$ contains S. For this F we have $\frac{a c e}{b d f}=1$. However there is a unique F on the arc $E A$ such that $\frac{f}{e}=\frac{a c}{b d}$. Hence if $\frac{a c e}{b d f}=1$ holds, this has to be the F for which $A D, B E$ and $C F$ intersect in a point. Hence the other direction of the lemma is proven.

11. We shall prove that a 6×6 board cannot be tiled. Suppose a corner square is covered by a skewtetromino. Then the tetromino next to it has to be a T-tetromino:

Then we notice we can cover the corner equivalently with a T-tetromino. Hence we can assume w.l.o.g. that all corners are covered by T-tetromino. If two corners are covered T-tetrominos oriented towards each other, notice that the red tile cannot be covered without causing another tile to become uncoverable. We're left with the case where T-tetrominos all oriented differently, but note that then the square in center cannot be covered.

Hence a 6×6 board cannot be tiled. A 10×10 board can be covered as in the picture below.
To cover a 2022×2022 board we shall require covering 4×4 and 4×6 boards:
Next we divide the 2022×2022 board into 10×10, two 10×2012 and 2012×2012 boards. Further 10×2012 can be divided into 10×4 boards that separate into 4×4 and 4×6 boards. The 2012×2012 board can be divided into 4×4 boards. Each of the boards pieces can now be covered.

12. Modulo 4 gives us:

$$
9^{n}+10^{n}+11^{n} \equiv 1+3^{n} \equiv 0,1(\bmod 4)
$$

for $n / g e 2$. Hence n is odd. Next modulo 9 gives us:

$$
9^{n}+10^{n}+11^{n} \equiv 1+2^{n} \equiv 0,1,4,7(\bmod 9)
$$

This gives us that $n=6 k+3$ Next we observe modulo 13:

$$
\begin{gathered}
9^{n}+10^{n}+11^{n} \equiv(-4)^{n}+(-3)^{n}+(-2)^{n} \equiv-64-27-8(-1)^{k} \\
\equiv 8(-1)^{(k+1)} \equiv 0,1,3,4,9,10,12(\bmod 13)
\end{gathered}
$$

The expression can only give residues 5 or 8 modulo 13 . However neither are quadratic residues. Hence there exists no n for which $9^{n}+10^{n}+11^{n}$ is square.

