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The Mathematical Grammar School Cup

:: MATHEMATICS SOLUTIONS ::

PART ONE

1. B) 14 2. D) 336 3. F) 9 4. D) 214

5. C) 2 · 32021 6. E) 5 7. E) π − 1, 92 8. C) 13924

PART TWO

9. Let ABCD be a trapezoid such that AB ‖ CD and AB = 23, BC = 5, CD = 10. Furthermore,
^DCB = 90◦ + ^BAD.

(a) Compute the length of side AD.

(b) Let M and N be the midpoints of segments AB and CD, respectively. Compute the
length of segment MN .

(c) Compute the length h of the altitude of this trapezoid.

Solution. Let E be the point on side AB such
that ^BCE = 90◦. Since ^BCE+^ECD =
^DCB = 90◦ + ^BAD, we conclude that
^ECD = ^BAD. Hence, rectangle AECD
is a parallelogram and AD = EC, AE = 10. A B

CD

E M

N

O

Triangle EBC is right angled at C, with CB = 5 and EB = 23−10 = 13. Therefore, EC = 12
((5, 12, 13) is a well-known Pythagorean triple), and AD = 12.

Let O be the the point of EB such that MOCN is a parallelogram. Then BO = BM −MO =
23
2
− 10

2
= 13

2
, i.e., point O is the midpoint of hypotenuse BE of triangle EBC. Therefore,

CO = BO = EO, and MN =
13

2
.

Finally, we compute the area of 4EBC in two different ways to obtain
h · EB

2
=
CE · CB

2
and, hence, h =

60

13
.

10. A tiling of a board is a way to place several tiles on that board so that all of its squares are
covered, but no tiles overlap or lie partially off the board. It is allowed to rotate tiles. In this

problem we will consider tilings by dominoes ( ) or L–shaped trominoes ( ).

(a) How many different tilings of a 2× 10 board by dominoes are there?

(b) How many different tilings of a 3× 100 board by trominoes are there?
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(c) Let n × m, for 2 6 n 6 m, be the board of the
smallest area which can be tiled by dominoes in
such a way that every line parallel to the board
sides, that intersects the interior of the board,
also intersects the interior of at least one domino.
What are n and m equal to?

(d) Draw at least one tiling of a 4 × 9 board by tro-
minoes in such a way that that every line parallel
to the board sides, that intersects the interior of
the board, also intersects the interior of at least
one tromino.

T

D1

D2

`1

`2

For example, in the picture above
line `1 intersects the interior of both
domino D1 and tromino T , while `2 in-
tersects only the interior of tromino T .

Solution.

(a) Denote by an the number of different tilings of a 2×n board by dominoes. Our task is to
compute a10.

Let us take a look at the top–left corner of the
board. It can be covered by a domino in one of
the two ways shown in the picture to the right.

In the case (i), we are left with tilings of a 2×(n−
1) board, and there are an−1 of those. In the case
(ii), a horizontal domino must be placed below
the one covering top-left corner, and we are again
left with tilings of a smaller board – this time it
is a 2× (n− 2) board with an−2 tilings.

(i)

(ii)

We conclude that an = an−1 + an−2. So, in order to compute a10, we need to compute
a1 and a2, which is very easy. Namely, a1 = 1 (one vertical domino) and a2 = 2 (both
dominoes are either horizontal or vertical). Now we have a3 = 3, a4 = 5, a5 = 8, a6 = 13,
a7 = 21, a8 = 34, a9 = 55, and finally a10 = 89.

Comment: Some students might notice that, for n > 1, an = fn+1, where (fn) is the
famous Fibonacci sequence.

(b) We proceed with the same idea as in the part (a), by
looking at the top–left corner of the board, see the
picture to the right.

In both cases (i) and (ii) there is a unique way to put a
tromino to cover down–left corner of the board, while
the situation depicted in (iii) is not possible since it
does not yield a valid tiling.

Therefore, if bn is the number of different tilings of a
3 × n board by trominoes, we have bn = 2bn−2, for
n > 3, and therefore b100 = 249 · b2. Having in mind
that b2 = 2, we obtain the desired number, b100 = 250.

(i)

(ii)

(iii)
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(c) It can be checked that, if n ∈ {2, 3, 4}, there always exists a line parallel to the board
sides, that intersects the interior of the board, but does not intersect the interior of any
domino – see the picture below for some cases, which illustrate how one could proceed
with the proof.

Therefore, we must try to construct a required tiling
for n = 5. The smallest m > n for which any tiling
by dominoes exists is m = 6, and we claim that n = 5
and m = 6 is our answer, see the picture on the right.

(d) One such tiling is given in the picture below.

11. Let S(n) be the sum of digits of a positive integer n.

(a) Find the smallest positive integer n such that 9 | S(n) and 9 | S(n+1). If no such number
exists, write ’X’.

(b) Find the smallest positive integer n such that 11 | S(n) and 11 | S(n + 1). If no such
number exists, write ’X’.

(c) Finally, find the number of positive integers n with at most 8 digits for which it holds
that 11 | n, 11 | S(n), and 11 | S(n+ 1), and write all of them.

Solution.

(a) Suppose that, for some positive integer n, we have 9 | S(n) and 9 | S(n+1). From the fact
that n ≡ S(n) (mod 9) it follows that 0 ≡ S(n + 1) − S(n) ≡ (n + 1) − n = 1 (mod 9),
which is a contradiction. Therefore the answer is X, there does not exist such a number.

(b) Firstly, note that if the last digit of a positive integer n is not equal to 9, then S(n+ 1)−
S(n) = 1, and the difference cannot be divisible by 11. Therefore, if a number n such that
11 | S(n) and 11 | S(n+ 1) exists, its last k digits, for some k > 1, must be equal to 9:

n = am . . . ak 9 . . . 9²
k

, with ak 6= 9.

For such n, S(n) = am + · · · + ak + 9k and S(n + 1) = am + · · · + (ak + 1). Therefore,
11 | S(n)−S(n+1) = 9k−1 if and only if k = 5+11s, for a nenegative integer s. We seek
the smallest positive integer n satisfying conditions in (b) among numbers ending with five
nines. That number cannot be a six–digit number a99999 because 11 - a+ 1 = S(n+ 1),

Page 3
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for a ∈ {1, 2, 3, . . . , 8}. Let us proceed with 7–digit numbers ab99999 such that b 6= 9 and
11 | a + b + 1 = S(n + 1). Since b 6 8, we get that a > 2, and therefore, the smallest
positive integer n satisfying 11 | S(n) and 11 | S(n+ 1) is n = 2899999.

(c) From the part (b), we know that such a number n must have at least 7 digits and must end
with five nines. Firstly, suppose that n = ab99999, for b 6 8. Then (part (b)), 11 | S(n)
and 11 | S(n+1) if and only if 11 | a+b+1. Since 11 | n, we get that 11 | a+3·9−(b+2·9),
i.e., 11 | a− b+ 9. It is now easy to see that the only such 7–digit number is n = 6499999.

Now, let 11 | S(n), 11 | S(n+1), 11 | n, and n = abc99999, a > 1, c 6= 9. Part (b) gives us
that the first two conditions are met if and only if 11 | a+b+c+1 (∗), while 11 | n if and only
if 11 | a+c−b−9 (∗∗). By substracting (∗∗) from (∗) we get that 11 | 2b+10, so b must be
equal to 6. Hence, 11 | a+c+7, and (a, c) ∈ {(1, 3), (2, 2), (3, 1), (4, 0), (7, 8), (8, 7), (9, 6)}.
Therefore, the answer to part (c) is: there are eight such numbers, and they are 6499999,
16399999, 26299999, 36199999, 46099999, 76899999, 86799999, 96699999 (it is easy to
check that for all these numbers all conditions given in the part (c) are met).

12. (a) Find the minimum ma of the expression
x2 + 1

x
, for x > 0.

(b) Find the minimum mb of the expression
x3 + 3x+ 9

x2
, for x > 0.

(c) Find the minimum mc of the expression
(x+ 1)(y + 2)(xy + 2)

xy
, for x > 0 and y > 0.

(d) Find the minimum md of the expression
(x+ 4)(y + 1)(xy + 864)

xy
, for x > 0 and y > 0.

Solution.

(a) Using the Arithmetic–Geometric Mean Inequality (AG) we get x+
1

x
> 2

√
x · 1

x
= 2. The

equality holds for x = 1, and ma = 2.

(b)
x3 + 3x+ 9

x2
=

x3

3
+ x3

3
+ x3

3
+ 3x+ 9

x2
AG

>
1

x2
· 5 · 5

√
x3

3
· x

3

3
· x

3

3
· 3x · 9 = 5. The equality

holds if and only if x3

3
= 3x = 9, i.e., iff x = 3. Therefore, mb = 5.

(c)
(x+ 1)(y + 2)(xy + 2)

xy

AG×3

>
2
√
x · 2
√

2y · 2
√

2xy

xy
= 16. The equality holds if and only if

x = 1, y = 2, and xy = 2. Hence, mc = 16.

(d) Firstly, let us prove that, for x, y, z > 0, (x3 + 1)(y3 + 1)(z3 + 1) > (xyz + 1)3 (I). This
inequality is equivalent with x3y3 + y3z3 + z3x3 + x3 + y3 + z3 > 3x2y2z2 + 3xyz, and this
is true since

x3y3 + y3z3 + z3x3
AG

> 3 3
√
x6y6z6 = 3x2y2z2 and x3 + y3 + y3

AG

> 3 3
√
x3y3z3 = 3xyz.

We see that the equality holds if and only if x = y = z. Now we use this to get:

(x+ 4)(y + 1)(xy + 864)

xy
= 4

(x
4

+ 1
)

(y + 1)

(
864

xy
+ 1

)
(I)

> 4

(
3

√
x

4
· y · 864

xy
+ 1

)3
= 1372.

The equality holds if and only if x
4

= y = 864
xy

, i.e., for x = 24 and y = 6. Hence, md = 1372.
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