THE MATHEMATICAL GRAMMAR SCHOOL CUP
 -MATHEMATICS SOLUTIONS-

BELGRADE, June 23, 2020

PART ONE

The correct answers are: 1. (A)
2. (B)
3. (A)
4. (C)
5. (E)
6. (B)
7. (D)
8. (E)

PART TWO

9. Let $A B C$ be a triangle with $B C=4 \mathrm{~cm}, C A=9 \mathrm{~cm}, A B=12 \mathrm{~cm}$, and let I be the incenter of $\triangle A B C$. If D is the other intersection of $C I$ with the circumcircle of $\triangle A B C$, and if $C D=15,6 \mathrm{~cm}$, compute the length of $C I$.

Solution. It is well known that bisector $C I$ intersects the circumcircle of $\triangle A B C$ at the middle of arc $A B$, and therefore $D A=D B$. Since $\varangle I B D=\varangle I B A+\varangle A B D=\beta / 2+\gamma / 2, \varangle I D B=\alpha$, it follows that $\varangle B I D=180^{\circ}-\varangle I B D-\varangle I D B=\alpha+\beta+\gamma-\beta / 2-\gamma / 2-\alpha=$ $\beta / 2+\gamma / 2=\varangle I B D$. In other words, triangle $B I D$ is isosceles, and therefore $D A=D I=D B=x$.
Now we can use Ptolomy's theorem for the cyclic quadrilateral $A D B C$ to obtain

$$
\begin{aligned}
A B \cdot C D & =A C \cdot B D+A D \cdot B C, \text { i.e. } \\
12 \cdot 15,6 & =9 \cdot x+x \cdot 4
\end{aligned}
$$

Therefore, $x=14,4 \mathrm{~cm}$, and $C I=1,2 \mathrm{~cm}$.
10. Let $f(n)$ be a function that counts the number of positive integers bigger than n and not larger than $n+100$ that are divisible by 3 or 7 , but not by both. Let M be the maximal value of the function f on the set $\{1,2,3, \ldots, 2020\}$ and let k be the biggest positive integer not greater than 2020 such that $f(k)=M$.
(a) Find M.
(b) Find $k+f(k)$.

Solution. Since, for every n, there are exactly 100 positive integers k such that $n<k \leq n+100$, among those there are at most $\left\lceil\frac{100}{3}\right\rceil$ numbers divisible by 3 , at most $\left\lceil\frac{100}{7}\right\rceil$ divisible by 7 , and at least $\left\lfloor\frac{100}{21}\right\rfloor$ divisible by 21. Therefore,

$$
f(n) \leq\left\lceil\frac{100}{3}\right\rceil+\left\lceil\frac{100}{7}\right\rceil-2 \cdot\left\lfloor\frac{100}{21}\right\rfloor=41 .
$$

If we assume that there is a number n which satisfies the equality $f(n)=41$, then all the equalities above would have to hold, i.e., there would have to be 34 numbers divisible by 3,15 divisible by 7 and only 4 divisible by 21 .

Firstly, we consider divisibility by 3 . If one of the endpoints $n+1$ and $n+100$ is divisible by 3 , then both of them will be, since their difference is 99 . This is the only possibility that allows to have 34 numbers divisible by 3 , as otherwise, there is at most $\left\lceil\frac{99}{3}\right\rceil$ of them. Therefore, we need to have $n \equiv 2$ (mod 3). Similarly, considering divisibility by 7 , we that the only way to have 15 numbers divisible by 7 is when (exactly) one of the endpoints $n+1$ and $n+100$ is divisible by 7 . These are the cases $n \equiv 5,6$ $(\bmod 7)$. However, in both of these cases one of the endpoints is divisible by 21 , and hence there are 5 numbers divisible by 21 in the set $\{n+1, n+2, \ldots, n+100\}$.

We have proved that $f(n) \leq 40$. It is not too strenuous to check that $f(2)=40$, and hence $M=40$.
It is pretty straightforward to see that $f(2020)=f(2019)=39$ and that $f(2018)=40$, and therefore $k=2018$. Finally $k+f(k)=k+M=2058$.
11. (a) Find some numbers $b, c \in \mathbb{R}$ so that $\left|x^{2}+b x+c\right| \leq \frac{1}{2}$ holds for all $x \in[-1,1]$.
(b) Find some numbers $b, c, e, f \in \mathbb{R}$ so that $\left|x^{2}+b x y+y^{2}+d x+e y+f\right| \leq 1$ holds for all $x, y \in[-1,1]$.
(c) Find some numbers $b, c, e, f \in \mathbb{R}$ so that $\left|x^{2}+b x y+y^{2}+d x+e y+f\right| \leq \frac{1}{2}$ holds for all $x, y \in[0,1]$.
(d) Find some numbers $a, b, c, d, e, f, g, h, i, j \in \mathbb{R}$ so that

$$
\begin{aligned}
& \qquad\left|x^{2} y^{2}+a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+e x^{2}+f x y+g y^{2}+h x+i y+j\right| \leq \frac{1}{4} \\
& \text { holds for all } x, y \in[-1,1] \text {. }
\end{aligned}
$$

Solution.
(a) Substituting $x=0,1,-1$ we obtain the following inequalities

$$
\begin{array}{rlr}
|c| \leq \frac{1}{2} & \Longleftrightarrow & -\frac{1}{2} \leq c \leq \frac{1}{2} \\
|1+b+c| \leq \frac{1}{2} & \Longleftrightarrow & -\frac{1}{2} \leq 1+b+c \leq \frac{1}{2} \\
|1-b+c| \leq \frac{1}{2} & \Longleftrightarrow & -\frac{1}{2} \leq 1-b+c \leq \frac{1}{2} \tag{3}
\end{array}
$$

By adding inequalities (2) and (3), we obtain that $-1 \leq 2+2 c \leq 1$, i.e., $-\frac{3}{2} \leq c \leq-\frac{1}{2}$. Combining this and (1), we get that c must be equal to $-\frac{1}{2}$, and substituting this into (2) and (3), we get $-1 \leq b \leq 0$ and $0 \leq b \leq 1$, i.e., $b=0$. Now it is easy to check that $\left|x^{2}-\frac{1}{2}\right| \leq \frac{1}{2}$ for all $x \in[-1,1]$. This part has a unique solution $b=0, c=-\frac{1}{2}$.
(b) $x^{2}+y^{2}-1=\left(x^{2}-\frac{1}{2}\right)+\left(y^{2}-\frac{1}{2}\right)$ satisfies the conditions because of part (a): $b=d=e=0, f=-1$.
(c) One such polynomial is $x^{2}-2 x y+y^{2}-\frac{1}{2}=(x-y)^{2}-\frac{1}{2}, b=-2, d=e=0, f=-\frac{1}{2}$.
(d) One such polynomial is $\left(x^{2}-\frac{1}{2}\right)\left(y^{2}-\frac{1}{2}\right)=x^{2} y^{2}-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+\frac{1}{4}, a=b=c=d=f=h=i=0$, $e=g=-\frac{1}{2}, j=\frac{1}{4}$.
12. Let d be a positive integer. In a country called Matgimia there are $2020^{2020} \cdot d+1$ towns that are connected by two-way roads in the following way: the capital of the country is linked to exactly d other towns, while all other towns are organized in d chains of length 2020^{2020} which start from the capital, as shown in the figure. Let $c(X)$ be the number of roads leaving town $X(c(X)=d$ if X is the capital, $c(X)=1$ for the towns that are at ends of the chains, and $c(X)=2$ otherwise). On January 1st, n tourists arrived in the capital of Matgimia. On each of the following days, for each town X in which there are at least $c(X)$ tourists, exactly $c(X)$ tourists leave that town
 and go to the neighboring towns, each one using a different road. After a while, it turned out that all the tourists stopped traveling and that there is at most one tourist in each of the towns. Let $n_{1}<n_{2}<n_{3}<\cdots$ be all positive integers such that this situation is possible for $n=n_{k}, k=1,2, \ldots$. Find n_{2020} if
(a) $d=1$;
(b) $d=2$;
(c) $d=3$;
(d) $d=2020$.

Solution. The answers are: (a) 2020, (b) 2020, (c) 3030, (d) $2020 \cdot 1010=2040200$.
We can see that for any n, the number of tourists in the final configuration that stay in the capital, denote it by ℓ, is at most $d-1$. In all other towns the corresponding number is at most one. Since all the chains are in symmetrical positions, the number of tourists in each of the chains is equal; denote this number by k. Now we have that $n=k d+\ell$, and since $\ell \leq d-1$, we have that k and ℓ are uniquely determined (dividing n by d, there are unique quotient and remainder). Since it must be that $\ell \leq 1$, we get that $n=k d$ or $n=k d+1$. Since the length of chains is very large, one can prove that, for $n_{2 k+1}=k d+1, k \in\{0,1,2, \ldots, 1010\}$ and for $n_{2 k}=k d, k \in\{1,2, \ldots, 1010\}$, the process described above will indeed end and it will end in the desired configuration.

