THE MATHEMATICAL GRAMMAR SCHOOL CUP
-MATHEMATICS SOLUTIONS-
BELGRADE, June 26, 2019

PART ONE
The correct answers are: 1. (A) 2. (C) 38.(B) 4.(E) 5.(B) 6.(B) 7.(D) 8.(C)

PART TWO

9. Determine the last 3 digits of number b=1-3-5-7-...-26062019.

Solution. First, note that 1000 = 23 . 5% = 8-125. Number b is odd and it is clearly divisible by 125,
hence the number klm formed by the last 3 digits of b is an element of the set {125, 375, 625,875}.
Recall that b = klm (mod 8) and note that 125 =5 (mod 8), 375 = 7 (mod 8), 625 =1 (mod 8), and
875 =3 (mod 8B).
It is easy to see that, for k € {0,1,2,3,4,5,...},

(8k+1)- (8k+3) (8k+5)-(8k+7)=1-3-5-7=1 (mod 8),
and, since 26062019 = 8 - 3257752 + 3, we get that

b=(1-3-5-7)-(9-11-13-15)-...-26062017 - 26062019
= 1327752 1.3 = 3 (mod 8).
Therefore, the last 3 digits of number b are 875. A

10. Let k be a circle and let AC' and BD be two chords of different lengths which intersect in point G
(A, B,C, D are distinct points). Let H be the foot of the perpendicular from point G to line segment
AD. Line GH intersects line segment BC' at point P so that BP = PC. Prove that AC 1 BD.

Solution.

Let <DAC = o and <ADB = §. Then we also have
<DBC = « (inscribed angles subtended by chord DC)
and <ACB = ¢ (inscribed angles subtended by chord
AB).

Let ¢ be the circumscribed circle of triangle BCG
and denote its center by O. Since H,G, and P are
collinear, we have that

<BGP = <HGD =90° —¢.

On the other hand, <GOB = 2<GCB = 2§ (inscribed
and central angles in circle ¢). Triangle AGOB is
isosceles and therefore

1
<BGO = 3 (180° —20) = 90° — 4.

B We conclude that <BGP = <BGO, and points
H,G,0, and P must be collinear.

Clearly GB # GC (otherwise we would have GD = GA as well, and then AC = BD, which cannot
be since those chords are of different length). Now, point O lies on the bisector of segment BC, as well
as on line GP. Since GB # GC, these two lines intersect in exactly one point, namely point P. Hence,

O =P and R

1 1
<[BGC = §<IBOC = 5 . 1800 - 900.

11. Aleksa and Paja wrote 2019 positive integers on a blackboard. In one step, one can erase any two
numbers a and b from the blackboard, and write (a,b) and [a, b] instead (here, (a,b) denotes the greatest
common divisor of a and b, and [a, b] denotes their least common multiple). Prove that there exists a
positive integer n such that, after n steps, the collection of numbers written on the blackboard cannot be



changed anymore by using the procedure described above (the order in which the numbers are written
on the blackboard is of no importance).
Solution. Denote by P the product of all the numbers Aleksa and Paja wrote on the blackboard. Since
a-b=(a,b)-[a,b], for any two positive integers a and b, substituting a and b with (a,b) and [a, b] does
not change the product of all numbers. Hence, each number that can be written on the blackboard at
any point in time must be less than or equal to P, and the sum of all numbers cannot exceed 2019P.
Let us show that, if {a,b} # {(a,b),[a,b]}, then a +b < (a,b) + [a,b]. Let d = (a,b), and therefore
[a,b] = %b. We have that a,b > d and, therefore,

(a—d)(b—d)>0+=ab—ad—bd+d*>0
(:>ab+d2>ad+bd<:>%b+d>a+b.

It follows that, whenever we change the numbers written on the board, their sum strictly increases. We
conclude that we cannot change the numbers infinitely many times (in fact, we cannot do it more than
2019P times). A

12. Find all triples (a, b, ¢) of real numbers so that:
{a,b,c} ={ab+a+bbc+b+c,ca+c+a}.

Solution. If {a,b,c} = {ab+ a+b,bc+ b+ ¢,ca+ ¢+ a}, then
{a+1,0+1l,c+1}={ab+a+b+1,bc+b+c+1,ca+c+a+1}
={(a+1)b+1),(b+1)(c+1),(c+1)(a+1)}.
Letx =a+1,y=0b+1, and z = ¢+ 1. Our problem is equivalent to finding all real solutions to

A=A{z,y,2} = {zy,yz, zx}.
If |A| = 2: Without loss of generality, assume that # = y # 2. Then we have {z,z} = {2 x2}. Since
|A| = 2, z cannot be equal to 0, so either z = 1 (from x = 22) or z = 1 (from x = xz). The first case
clearly works, and we get the set of solutions

(a,b,¢) € {(0,0,t),(0,¢,0),(¢,0,0) | t € R\ {0}}.
When z = 1, we get {z,1} = {2%, 2} and, since z # z = 1, 2 = 1 and = —1. Here we get
(av b7 C) € {(_2a _27 0)7 (_27 07 _2)7 (07 _27 _2)}

It is easy to check that all of these are indeed solutions of the stated problem.
If |A| =1 or |A] = 3: We multiply and sum up all elements of set A:

(1) ayz=a?y®2?

(2) T+y+z=uzy+yz+ 27T
From the first equation we conclude that xyz =0 or xyz = 1.

xyz = 0: At least one of z,y, z must be equal to zero, and hence, at least two of zy, yz, zx must be
zero. We conclude that at least two of z, y, z must be equal to zero, and, following the same line
of reasoning, r =y =z = 0.
The solution we obtain in this case is a = b = ¢ = —1, which clearly satisfies the above condition.

xyz = 1: From equation (2) we get xyz + x4+ y+ 2z = 2y + yz + zx + 1. This is equivalent to
(x —1)(y — 1)(z — 1) = 0. Without any loss of generality, assume that z = 1. Now we have
{Ly, 2z} ={1-y,yz,2-1}, i.e., yz = 1. Tt is easy to check that (z,y, z) = (1,t, %), for t € R\ {0},
satisfies that {z,y, 2z} = {zy, yz, 2z}, and therefore in this case we get

(a,b,¢) € {(O,t—l,i—1),(1—1,0,t—1),(t—1,1—1,0)teR\{O}}.

Finaly, the set of all solutions is
S§={(-1,-1,-1),(0,0,0)} U {(0,0,¢),(0,¢,0), (¢t,0,0) | t € R\ {0}}

1 1 1
{617 =, G - 1001~ Lg - 1O [t R\ .1}



