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PART ONE

The correct answers are: 1. (E) 2. (B) 3. (C) 4. (A) 5. (E) 6. (B) 7. (D) 8. (D)

PART TWO

9. Given a regular 2018-gon, find the smallest positive integer k such that among any k
vertices of the polygon there are 4 with the property that the convex quadrilateral they
form shares 3 sides with the polygon.

Solution. Number the vertices of the given polygon from 1 to 2018. What we want is that
any set of k vertices contains at least 4 consecutive ones.

Consider the 4-tuples of consecutive vertices,

(1, 2, 3, 4), (2, 3, 4, 5), . . . , (2017, 2018, 1, 2), (2018, 1, 2, 3).

There are 2018 different ones. Each vertex uses exactly four of these 4-tuples.
Therefore, if 4k > 3 · 2018, by the Pigeon-hole principle, there is a 4-tuple with four of

the k vertices. That is, if k ≥ 1514, the condition we want is met.
To see that 1514 is the minimum, it is enough to take all the vertices, except the

multiples of 4 and 2018. That way we get a set of 2018− 2016/4− 1 = 2018− 505 = 1513
vertices with no four consecutive ones. N

10. Let the incircle of acute triangle ABC touch side BC at point D. Let us denote the
points in which the incircle of triangle ABD touches sides BD, AD, and AB, by X, Y ,
and Z, respectively, and the points in which the incircle of triangle ACD touches sides
CD and AD, by T and Y ′, respectively.
(a) Prove that Y = Y ′.
(b) If lines XZ and Y T intersect at point P , prove that lines PA and BC are parallel.

Solution.
A

B C
D

Z

X T

P

Y Y 0

(a) Since D is the touching point of the incircle of 4ABC with BC, we have that

CD =
1

2
(AC + BC − AB) , BD =

1

2
(AB + BC − AC) .



Now we use the fact that Y and Y ′ are also the touching points of the corresponding
incircles to obtain:

AY =
1

2
(AB + AD −BD) , AY ′ =

1

2
(AC + AD − CD) .

From these equalities we obtain that

AY − AY ′ =
1

2
(AB − AC + CD −BD)

=
1

2

(
AB − AC +

1

2
(AC + BC − AB)− 1

2
(AB + BC − AC)

)
= 0,

and therefore Y = Y ′.

(b) Let p be the line parallel to BC containing point A. It is our goal to show that
p = AP . Let {P1} = p ∩XZ, {P2} = p ∩ Y T .

Since p ‖ BC and ^AZP1 = ^XZB, we can conclude that 4AP1Z ∼ 4BXZ. Since
BX = BZ, it follows that AP1 = AZ.

Similarly, we can conclude that AP2 = AY , and, since AZ = AY , it follows that
AP1 = AP2. Hence, P1 ≡ P2 ≡ P , and therefore, p ≡ AP . N

11. Prove that number N = 222018 − 1 has at least 2018 distinct prime factors.

Solution. First notice that

222018 − 1 =
(

222017 − 1
)
·
(

222017 + 1
)

=
(

222016 − 1
)
·
(

222016 + 1
)
·
(

222017 + 1
)

= · · · =
(

220 − 1
)

︸ ︷︷ ︸
=1

·
(

220 + 1
)
· . . . ·

(
222016 + 1

)
·
(

222017 + 1
)

(1)

Since there are 2018 factors in the product on the right hand side of the previous
equality, it suffices to show that all these factors are relatively prime in pairs.

Let Fk = 22k + 1. Let us show that (Fk, Fj) = 1, for all 1 ≤ j < k. Analogously to (1),
we obtain that

(2) Fk − 2 = Fk−1 · Fk−2 · . . . · F1 · F0.

Now suppose that, for some 1 ≤ j < k, d | Fj and d | Fk, where d ∈ N. Using (2), we get
that d | 2. Since Fi is odd, for i ≥ 1, we conclude that d must be equal to 1. In other
words, (Fk, Fj) = 1.

Now, let pi be any prime factor of Fi. Since 222018−1 = F2017 ·F2016 · . . . ·F0, we conclude
that pi | 222018−1, for all i ∈ {0, 1, . . . , 2017}. Finally, we get that p0p1 · · · p2017 | 222018−1,

and since pi 6= pj, for i 6= j, we have proved that 222018−1 has at least 2018 distinct prime
factors. N

12. Suppose that a, b, c are positive real numbers. Prove the following inequality:

(3)
a + b

2
· b + c

2
· c + a

2
≥ a + b + c

3
· 3
√

(abc)2.

Solution 1. Let

x =
a

a + b + c
, y =

b

a + b + c
, z =

c

a + b + c
, and note that x + y + z = 1, x, y, z > 0.

With these notations, the inequality (3) is equivalent with

(4)
x + y

2
· y + z

2
· z + x

2
≥ 1

3
· 3
√

(xyz)2.



Now we have that
x + y

2
· y + z

2
· z + x

2
=

1− z

2
· 1− x

2
· 1− y

2
=

1

8
(1− (x + y + z) + (xy + yz + zx)− xyz)

=
1

8
(xy + yz + zx− xyz) =

xyz

8

(
1

x
+

1

y
+

1

z
− 1

)
,

i.e., the inequality (4) is equivalent with

(5) 3
√
xyz

(
1

x
+

1

y
+

1

z
− 1

)
≥ 8

3
.

The Harmonic Mean–Geometric Mean–Arithmetic Mean Inequality gives us that

3
1
x

+ 1
y

+ 1
z

≤ 3
√
xyz ≤ x + y + z

3
=

1

3
, and therefore

3
√
xyz

(
1

x
+

1

y
+

1

z
− 1

)
= 3
√
xyz

(
1

x
+

1

y
+

1

z

)
− 3
√
xyz ≥ 3− 3

√
xyz ≥ 3− 1

3
=

8

3
,

which is exactly what we were supposed to show.
The equality holds if and only if x = y = z, i.e., if and only if a = b = c. N

Solution 2. First, we will show that the inequality

(6) (a + b)(b + c)(c + a) ≥ 8

9
(a + b + c)(ab + bc + ca)

holds for all positive real numbers a, b, c. Namely,

(6)⇐⇒ 2abc + a2b + ab2 + a2c + ac2 + b2c + bc2 ≥ 8

9

(
3abc + a2b + ab2 + a2c + ac2 + b2c + bc2

)
⇐⇒ a2b + ab2 + a2c + ac2 + b2c + bc2 − 6abc ≥ 0.

Using the Arithmetic Mean–Geometric Mean Inequality, we obtain

1

6

(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
≥ 6
√
a2 · b · a · b2 · a2 · c · a · c2 · b2 · c · b · c2 = abc,

which shows that inequality (6) is satisfied.

Finally, using (6), we get that

(a + b)(b + c)(c + a) ≥ 8

9
(a + b + c)(ab + bc + ca) =

8

3
(a + b + c)

ab + bc + ca

3

≥ 8

3
(a + b + c) · 3

√
ab · bc · ca =

8

3
(a + b + c) · 3

√
a2b2c2,

which completes our proof. Note that the equality holds if and only if a = b = c. N


