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PART ONE

The correct answers are: 1. (C) 2. (A) 3. (B) 4. (E) 5. (C) 6. (A) 7. (D) 8. (E)

PART TWO

9. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove the following inequality:(
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Solution. First we use the inequality between the quadratic and the arithmetic mean for numbers
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Using the inequality between the harmonic and the arithmetic mean for a, b, c we get

3
1
a + 1

b + 1
c

≤ a+ b+ c

3
=

1

3
=⇒ 1

a
+

1

b
+

1

c
≥ 9. (∗∗)

Now we plug-in (∗∗) to (∗) and get
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Equality holds if and only if a = b = c = 1/3. N

10. Let ABC be a triangle with ^BAC = 50◦, ^ABC = 60◦. If D and E are points on
sides AB and BC, respectively, so that ^DCA = ^EAC = 30◦, compute the measure of angle
^CDE.
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Solution. Let AE ∩ CD = {K}. Triangle AKC is isosceles
since ^KAC = ^KCA = 30◦. It follows that AK = KC and
^AKC = 120◦. Since ^AKC = 2 · ^ABC and KA = KC,
we conclude that K is the centre of circumcircle k of 4ABC.

Since AK = KC = KB, we obtain that 20◦ = ^KAB =
^KBD and, since vertical angles are congruent, ^DKE =
^AKC = 120◦. From ^DKE+^DBE = 180◦ it follows that
rectangle DBEK is cyclic. Since all angles inscribed in a circle
and subtended by the same chord are equal, we obtain that
^KDE = ^KBE = 40◦. Therefore,

^CDE = ^KDE = 40◦. N

11. Find all positive integers m and n so that 2n = 3m + 5.

Solution. For n = 3 we get that m = 1, and for n = 5, m = 3. We will prove that these are the
only possible solutions.



One can easily check that n ∈ {1, 2, 4} cannot be a solution. Suppose now that n > 5. In this
case 2n is divisible by 64 and all possible remainders r when dividing 3k by 64 are given below:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r 3 9 27 17 51 25 11 33 35 41 59 49 19 57 43 1

Since 64 | 3m + 5, we conclude that m = 11 + 16`, for ` ∈ N. Now let us show that, in this case,
the remainder when dividing 2n by 17 is not the same as when dividing 3m + 5 by 17.

We have that 3m = (316)` · 311 and, since 316 ≡17 1 (Fermat’s little theorem) and 311 ≡17 7,
we conclude that 3m + 5 ≡17 12. On the other hand, the possible remainders r when dividing
2n by 17 are given below:

n 1 2 3 4 5 6 7 8
r 2 4 8 16 15 13 9 1

Number 12 does not appear in the table, which proves that n > 5 cannot be a solution. Therefore,
the only solutions are n = 3,m = 1, and n = 5,m = 3. N

12. We are given a necklace with 7 beads, as in the figure below. Each of the beads we colour
in one of the three colours (red, blue, yellow). We say that such a colouring is colourful if every
colour is used at least once. How many different colourful colourings are there, if the colourings
that could be obtained one from another by rotating the necklace are considered to be the same?

Necklace before colouring. Two colourful colourings that are the same.

Solution. First we enumerate the beads with numbers 0−6, as shown in the picture. Then each
of the seven beads can be coloured in one of the 3 colours, which gives us 37 configurations. Two
problems arise: (1) How many of those configurations are not colourful? (2) How many of those
did we count more than once, because they are the same with respect to a rotation (allowed

rotations are k · 360◦7 = kα, for k ∈ {1, 2, 3, 4, 5, 6})?
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Let us first answer the question number (2). The key question to
answer is what configurations are invariant under rotation for the angle
kα. In other words, how does a necklace have to be coloured so that,
when we rotate it for kα, where k is a fixed number from {1, 2, 3, 4, 5, 6},
we get the same necklace? Let us colour the bead numbered with 0 in
colour C (C is one of Y ellow, B lue, Red), and suppose we get the same
necklace when rotating for kα, for some k ∈ {1, 2, 3, 4, 5, 6}. Then the
bead k also has to be coloured in C, as well as the beads numbered with
(2k)mod 7, (3k)mod 7, (4k)mod 7, (5k)mod 7, and (6k)mod 7. Since 7 is a prime number, we get that

{0, k, (2k)mod 7, (3k)mod 7, (4k)mod 7, (5k)mod 7, (6k)mod 7} = {0, 1, 2, 3, 4, 5, 6},
i.e., all beads have to be coloured in colour C. There are 3 monochrome necklaces, therefore the
number of different necklaces with at most 3 colours is equal to
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We can use the same reasoning to conclude that the number of different necklaces with at
most 2 colours is equal to 1

7(27 − 2) + 2 = 20, and for one colour this number is 1. Using the
Inclusion-Exclusion Principle, we get that the number of different colourful necklaces (necklaces
with exactly 3 colours) is equal to:

Y BR− Y R− Y G−GR+ Y +G+R = 315− 3 · 20 + 3 = 258. N


