SOLUTIONS TO THE

MATHEMATICAL GRAMMAR SCHOOL CUP
 - MATHEMATICS -

1. B$) ;$ 2. A$) ;$ 3. D); 4. E$) ;$ 5. C$) ;$ 6. C$) ;$ 7. D$) ;$ 8. C$)$.
2. For any integer a one of the following statements is true:

$$
\begin{aligned}
& a \equiv 0(\bmod 9) ; \\
& a \equiv \pm 1(\bmod 9) \\
& a \equiv \pm 2(\bmod 9) \\
& a \equiv \pm 3(\bmod 9) \\
& a \equiv \pm 4(\bmod 9)
\end{aligned}
$$

so we conclude that for any integer a on of the following holds:

$$
\begin{aligned}
& a^{3} \equiv 0(\bmod 9) ; \\
& a^{3} \equiv \pm 1(\bmod 9) ; \\
& a^{3} \equiv \mp 1(\bmod 9) ; \\
& a^{3} \equiv 0(\bmod 9) ; \\
& a^{3} \equiv \pm 1(\bmod 9) ;
\end{aligned}
$$

so all possible remainders in the division of integer a^{3} by 9 are $0,1,-1$. On the other side, it holds that $2000 \equiv 2(\bmod 9)$ so $2000^{2} \equiv 4(\bmod 9)$, and the sum of three cubes cannot give 4 as the remainder in division by 9 . Hence, there are no integers x, y, z satisfying the given equality.
10. Let E and D be the points where the lines parallel to the sides BC and AB of the triangle $A B C$ intersect the side $A C$ of the triangle $A B C$. Smaller triangles are similar to the triangle ABC so it holds:

$$
\sqrt{\frac{P_{1}}{P}}=\frac{E D}{A C}, \sqrt{\frac{P_{2}}{P}}=\frac{A D}{A C}, \sqrt{\frac{P_{1}}{P}}=\frac{E C}{A C}
$$

If we add these equalities we get

$$
\sqrt{\frac{P_{1}}{P}}+\sqrt{\frac{P_{2}}{P}}+\sqrt{\frac{P_{3}}{P}}=\frac{E D+A D+E C}{A C}=1
$$

which implies that $\sqrt{P}=\sqrt{P_{1}}+\sqrt{P_{2}}+\sqrt{P_{3}}$, so $P=\left(\sqrt{P_{1}}+\sqrt{P_{2}}+\sqrt{P_{3}}\right)^{2}$.
11. According to the inequality between the arithmetic mean and the geometric mean it holds:

$$
\begin{align*}
a b+\frac{b}{a} & \geq 2 \sqrt{a b \cdot \frac{b}{a}}=2 b \tag{1}\\
a b+\frac{a}{b} & \geq 2 \sqrt{a b \cdot \frac{a}{b}}=2 a \tag{2}\\
\frac{b}{a}+\frac{a}{b} & \geq 2 \sqrt{\frac{b}{a} \cdot \frac{a}{b}}=2 \tag{3}
\end{align*}
$$

Now adding inequalities (1), (2) and (3) gives us:

$$
2\left(a b+\frac{a}{b}+\frac{b}{a}\right) \underset{1}{\geq} 2(a+b+1)
$$

The equality holds if and only if $a=b=1$.
12. $p^{p+2}+(p+2)^{p} \equiv p^{p+2}+(-p)^{p}(\bmod 2 p+2)$

$$
\begin{aligned}
& \equiv p^{p+2}-p^{p}(\bmod 2 p+2) \\
& \equiv p^{p}\left(p^{2}-1\right)(\bmod 2 p+2) \\
& \equiv p^{p}(p-1)(p+1)(\bmod 2 p+2) \\
& \equiv 0(\bmod 2 p+2)
\end{aligned}
$$

because $2 p+2 \mid(p-1)(p+1)(2 \mid p-1$ and $p+1 \mid p+1)$.

