SOLUTIONS TO THE
 MATHEMATICAL GRAMMAR SCHOOL CUP
 - MATHEMATICS -

1. B)
2. C)
3. C)
4. A)
5. B)
6. D)
7. B)
8. E)
9. Let us denote

$$
x=m-3, y=n-5, z=p-7 .
$$

Now we have $x+y+z=0$ and $x^{3}+y^{3}+z^{3}=540$. Since

$$
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right),
$$

we have that $x y z=180=2^{2} \cdot 3^{2} \cdot 5$, so the solutions are $(m, n, p) \in\{(-1,0,16),(-2,1,16),(12,0,3),(12,1,2)(-2,14,3),(-1,14,2)\}$
10. From the AM-GM inequality (inequality of arithmetic and geometric means) we have $x^{2}+2 y z \leq x^{2}+y^{2}+z^{2}$, hence

$$
\begin{equation*}
\frac{x^{2}}{x^{2}+2 y z} \geq \frac{x^{2}}{x^{2}+y^{2}+z^{2}} \tag{1}
\end{equation*}
$$

In the same way we would get

$$
\begin{equation*}
\frac{y^{2}}{y^{2}+2 x z} \geq \frac{y^{2}}{x^{2}+y^{2}+z^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z^{2}}{z^{2}+2 x y} \geq \frac{z^{2}}{x^{2}+y^{2}+z^{2}} . \tag{3}
\end{equation*}
$$

Adding inequalities (1), (2), (3) gives us

$$
\begin{equation*}
\frac{x^{2}}{x^{2}+2 y z}+\frac{y^{2}}{y^{2}+2 x z}+\frac{z^{2}}{z^{2}+2 x y} \geq \frac{x^{2}+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}=1 \tag{4}
\end{equation*}
$$

Noticing that
$\frac{x^{2}}{x^{2}+2 y z}+\frac{y^{2}}{y^{2}+2 z x}+\frac{z^{2}}{z^{2}+2 x y}+2 \cdot\left(\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}\right)=3$
together with (4) implies

$$
2 \cdot\left(\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}\right) \leq 2 .
$$

Hence,

$$
\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y} \leq 1 .
$$

The equality holds if and only if $x=y=z$.
11. The base of the pyramid is a triangle, so the length of its altitude is $h=\sqrt{3^{2}-2^{2}}=\sqrt{5}$, while its area is $B=\frac{4 \sqrt{5}}{2}=2 \sqrt{5}$.
Further, the radius of the circle circumscribed about the base is

$$
R=\frac{a b c}{4 B}=\frac{3 \cdot 3 \cdot 4}{4 \cdot 2 \cdot \sqrt{5}}=\frac{9}{2 \cdot \sqrt{5}}
$$

The foot of the altitude of the pyramid is the center of the circle circumscribed about the base, hence

$$
H=\sqrt{3^{2}-R^{2}}=\sqrt{9-\left(\frac{9}{2 \cdot \sqrt{5}}\right)^{2}}=\frac{3}{2} \sqrt{\frac{11}{5}} .
$$

The volume of the pyramid is $V=\frac{1}{3} B \cdot H=\frac{1}{3} 2 \sqrt{5} \cdot \frac{3}{2} \sqrt{\frac{11}{5}}=\sqrt{11}$.
12. Since $10^{4} \equiv 4(\bmod 7)$ and $10^{6} \equiv 1(\bmod 7)$, we have

$$
10^{6 k+4}+3 \equiv 0(\bmod 7) .
$$

Hence, $7 \mid 10^{6 k+4}+3$.
Remark. Similarly we would show that $13 \mid 10^{6 k+1}+3$.

